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The inverse mass parameters, deformation potential constants and g-factor 
of the valence band of germanium are determined through a cyclotron re
sonance study. By means of 35 and 70 GHz microwave spectrometers, 
several quantum lines are observed with good resolution between 1.5 and 
4.2°K under the application of uniaxial compression along particular crystal 
axes. Analyses of these quantum lines yield : A=-13.50±0.05, B=-8.80 
± 0.09 and N= -35.20± 0.23 in the unit of (h2/2mO); the shear deformation 
potential constants D,,=3.14±0.20, D".=4.00±0.20 and the dilatational one 
Dr = -5.2:;:~:g or +3.3:~:g in the unit of (eV) ; while the g-value is found to 
be 7.8. 

§ 1. Introduction 

Cyclotron resonance is one of the most straight
forward and precise techniques to determine the 
band parameters of solids. Supported by theore
tical considerations, Lax, Zeiger and Dexter l ) and 
Dresselhaus, Kip and Kittel2) played the pioneer 
roles in cyclotron resonance for unveiling the 
band structures of germanium and silicon. 

The valence band is more complex than the 
conduction hand. Its band edge is located at k= 
0, or the n~ point , in the Brillouin zone. This 
band has degeneracy due to the cubic symmetry 
and consequently the warped equipotential energy 
surfaces. The values of inverse mass parameters 
A, Band N can be obtained through measuring 

* Now at Faculty of Engineering, Shizuoka Uni
versity, Hamamatsu. 

the cyclotron resonance peaks of the so-called 
light and heavy holes. Their precise determina
tion, however, has been difficult, since the reson
ance line, especially that of heavy hole, is 
broadened on account of the so-called quantum 
effects. The Landau levels of the degenerate 
band are not of equal spacing, depending on the 
quantum number n and the wave number kH 

along the applied magnetic field. In the absence 
of uniaxial stress, which lifts the r~s point de
generacy, the quantum effects have been theore
tically investigated by Luttinger and Kohn,3) 
Luttinger,4) Wallis and Bowlden,S) while are ex
perimentally observed first in cyclotron resonance 
of germanium by Fletcher et at.,6) at 1.3°K. 
Goodman?) compared their experimental results 
with Luttinger's theory.4) Later Hensel8) made 
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more detailed experiments and Okazaki9) success
fully explained Hensel's new lines through a theo
retical calculation which is more precise than 
Goodman's one. 

The quantum-mechanical treatment of cyclo
tron resonance in the presence of band degenera
cy is difficult and tedious, particularly so in the 
linewidth problem. Hensel and FeherlO) avoided 
the difficulty by applying uniaxial stress on sili
con, followed by Hasegawa's theoretical inter
pretation.l1) Application of uniaxial stress re
moves the cubic symmetry from the crystal and 
thus lifts the n 5 point degeneracy. In zero mag
netic field, the decoupled states are degenerate 
Kramers doublets designated by quantum num
bers ± M;. The decoupled bands have nearly 
ellipsoidal surfaces which, like the conduction 
band, give cyclotron resonance masses amenable 
to a straight interpretation. On compression, 
M ;= ±; bands go down both for silicon and for 
germanium on account of the plus signs of the 
deformation potential constants. The band para
meters A, B and N of silicon have been deter
mined by Hensel and Feher more accurately than 
in earlier works. They used a 9 GHz microwave 
spectrometer, in which war is not large enough to 
resolve quantum lines even at 1.2°K. Theyob
tained the deformation potential constants D .. and 
D .. " analyzing the linewidth and position of the 
so-called split hole resonance which consist of dif
ferent quantum transitions . In 1966 Hensel'2) and 
Otsuka, Murase' and Fujiyasu18) took the same . 
procedure for germanium and observed several 
quantum lines at 50 GHz and 35 GHz, respective
ly. For germanium, analysis is simpler than for 
silicon because of a large spin-orbit coupling. 
Values of A, Band N as well as those of D .. and 
D .. , have thus been obtained. Recently HenselU ) 

observed combined resonance and determined the 
valence band g-factor precisely. 

The uniaxial stress apparatus used in our earlier 
work was a kind of the so-called perpendicular 
squeezer with which the degree of freedom of the 
geometry is limited and hence not much analysis 
could be carried out. Success in making a parallel 
squeezer has enabled us to get more precise values 
of the above mentioned parameters. The line
width of the primary quantum line (n= O---)l , M j 

=-!) is measured as a function of temperature 
and the dilatational deformation potential con
stant D~ undetermined so far has been obtained 
with the help of theoretical works developed by 
Bardeen-Shockley15) and Herring-Vogt, 16) as well 

as the experimental works by Bagguley et ai. l7l 

and by Ito et ai. 1S) In order to make a quantum
mechanical calculation of the conductivity, modi
fication19) of Ito's formula has been made, with 
the kH-broadeningll) being taken into account. 

§ 2. Experimental 

For the experimental study of solid which is 
uniaxially compressed, it is required to have a 
precise stress apparatus and samples having the 
shape of strictly rectangular parallelepiped. 
Wafers with [110] surfaces are cut from a single 
crystal ingot to a thickness of about 1.0 mm by a 
conventional slicing machine furnished with a 
diamond blade. The sliced wafer is fixed on a 
fiat glass plate with shellac and the glass plate is 
further mounted on an unglazed ceramic base 
with sealing wax. The pasted wafer is cut 
through the glass base by the diamond blade with 
extreme care. In this way a rectangular rod is 
obtained whose size is 11.0 x 1.0 x l.O mms. It is 
then pasted with fine sealing wax on the surface 
of a polishing matrix. The latter is made of mas
sive brass block at the precision of 1/1000 so that 
polished surfaces are necessarily made parallel to 
each other. Finally this rod is polished with dia
mond paste on silk cloth and etched with CP4 
solution for a few minutes. 

It has been difficult to apply uniaxial compres
sion in a homogeneous and reversible way, since 
the space restriction is very acute in such a low 
temperature measurement under a magnetic field. 
Especially the parallel squeezer, in which the 
direction of the compressive force is parallel to 
the horizontal plane within which the magnetic 
field is rotated , is more difficult to produce than 
the perpendicular squeezer, in which the relevant 
directions are perpendicular to each other. In 
Figs. 1 and 2 the parallel squeezer system is 
shown. Its residual friction is very small. Stress 
as high as 2 X 103 kg/cm2 is obtained through a 
lever arm having a mechanical ad vantage of 2.79 
and making the cross section of the sample as 
small as 5 X 10- 3 cm2 • The essential part of the 
squeezer consists of brass piston and small non
magnetic stainless-steel balls which are used to 
Change the direction of force by 90°. In the 
course of changing stress, the [110] plane of the 
sample is always kept strictly within the plane of 
the magnetic field rotation. 

In order to study hole scattering by lattice vibra
tions, it is required to hav e extremely pure- sam
ples , for neutral impurities have strong effects on 
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SU'PORTER 

SILICA ROO 

Fig. 1. Outer view of the squeezer head. 

the linewidth.17 .20 .21) Samples employed are ultra
high pure germanium (70 ohm-em) kindly sup
plied by Dr. H. Yonemitsu at the Tokyo Shiba
ura Electric Company. Balanced bridge non
resonant superheterodyne spectrometers operat
ing at 35 GHz and 70 GHz have been used . These 
simplified detection systems make it possible to 
operate at less than 10- 7 watt with quite a toler
able signal-to-noise ratio. Carriers are generated 
by white light illumination from an 8Y-50W pro
jecter lamp and through a Toshiba infrared glass 
filter IRD- IA, which is to cut the wavelength less 
than 0.9p off. 

The light intensity is weakened by operating 
the lamp at 1.5",,4Y and using an optical iris to 
a void the broadening due to carrier-carrier inter-
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Fig. 2(a). Alignment of the piston, sample and silica 
rod at the central part of the parallel squeezer. 

(b). Local details of the mechanism of the 
squeezer. 

A: Pushing rod 
B: Stainless-steel balls 
C: Piston (shaded part) 
D : Sample through the waveguide 

actions. 22 ) The sample is directly immersed in the 
liquid helium bath. 

A typical feature of the absorption lines is 
shown in Fig. 3. 

2.5 

~ = 35 .3 GHz 

X = 1.03 x 10' kg / em' 

T = 1.5 OK 

3.0 
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MAGNETIC FIELD IN OERSTED 

Fig. 3. A typical quantum spectrum for H, XI/<l11 ) . 
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§ 3. Determination of Inverse Mass Parameters 
and Deformation Potential Constants D .. 
andD .. , 

Figures 4(a) and 4(b) show the angular de
pendence of effective mass of the hole cyclotron 
·:esonance lines obtained under the application of 
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Fig. 4(a). Anisotropy of the effective mass for the 
hole resonance with x//<111> and X = 1.9 X 1()3 kg! 
cm2• 
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Fig. 4(b). Anisotropy of the effective mass cf the 
hole resonance with X//<l00> and X = 1.42 X 1()3 kg! 
cm2• 

high stress, where the angle 8 taken along the 
abscissa is between the stress and the magnetic 
field directions. The stress dependences of the 
effective mass in the geometries of X, HII(l11 ) 
and X, HII( 100) are shown in Figs. 5(a) and 5(b), 
respectively. One can determine inverse mass 
parameters and deformation potential constants 
from the above data. The strain Hamiltonian H. 
constructed by Kleiner-Roth231 in terms of the 
angular momentum operator J is 

H.=DaY(eZZ+ ellll+ eu )+ ~ D{ (Jzz - tJz)ezz 

+ (JIIZ-fJz) ew +(J.z-fJ2)eu ] 
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Fig. 5(a). Dependence of the effective mass of the 
hole cyclotron resonance lines on strain para
meter121 s' for x, H//<111> and 35 GHz at 1YK. 
The solid and dashed curves refer to the theoreti
cal calculations given by the second order pertur
bation and by matrix diagonalization, respective
ly. 
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Fig. 5(b). Dependence of the effective mass of the 
hole cyclotron resonance lines on strain parameter 
s for X, H//< l00) and 35 GHz at 1.5°K. 

where eu , ••• , ezll , . . . are strain components 
while DaY, Du and Du' are the valence band de-
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formation potential constants. The effective mass 
Hamiltonian Hk for k· p perturbation is') 

Hk = A(k z2 + k,l + k ,2) - B [ k ,,2( J ,,2 _ +J2 ) 

+ kl ( J1l -+J2) + k,2( J,L+J2)] 

2 (3 .2) - 3" N [ {k"kll}{JzJ II} + {k",k. }{J ",J. } 

+{kvk. }{JIIJ. }] ; 

Under high stress, one is able to treat Hk in the 
Hamiltonian H= H. + Hk as the perturbation to 
H.. It has been calculated to second order by 
Hasegawa. 11) The values of A, B, N, D,. and Du! 
can be so determined as the experimental and 
theoretical effective masses agree most nicely with 
each other over the angle 8 between the stress 
and magnetic field directions for the transition 

m* 

mo 

(n= O----t I) and over the stress for those (n= O----tl 
and n= I----t2). Use is made of the relation 

(_1_)2 = cos28 + sin28 ; (3.3) 
m* mJ.2 mJ.m" 

whence we treat two cases of stress direction. 

Case I X//<l1l> 
In eq. (3.3) we put 

mJ. 
1 

N 
A --(1-4x) 

6 
N 

A + -(1 - 4x) 
3 

for the transition (n= O----t 1 , Mj=-~) ; 

e' ,D,.,X d ' · h . b· where X= - , e = -- an Il IS t e spm-or It 
,{ 3CH 

coupling constant. For a particular orientation 
H//<I11>, we find the expression of effective mass 
for the transition n----tn+ 1: 

( 2N2 ) , B 2+ _- n 
A - N (1 - 4x) _ 9 

6 4e' 

and 

Case II X//<100> 
We put 

in eq. (3.3); 

m* 
mo 

1 

1 
mJ.= B and m Il 

A - Z (I - 4x) 

heH 
moc 

1 
for Mj = - Z ' 

A+ B(1-4x) 

where x= -.:.... and e= 2D,.X 
,( 3(C11-C12) 

For H//< 100>, we have 

m* 

mo 
IB ~ { (B ± + N Y + ( B 2 + ~2)n ~ , 

A-T (1-4x) - e 

heH 
moc 

according as M j = ± -+ . 

(3.4) 

(3 .5) 
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Both in Figs. 4 and 5, the theoretical variations 
Qf the effective masses are given by the solid lines. 
We may note the peak (n=2~3, M;=-~) coin
<:ides with that of (n=O~l, M;= +~) in the case 
X, H//<l11> in eq. (3.4) . Agreement between 
theory and experiment is not so good for large 
quantum numbers and in the low stress region, 
for the second order perturbation becomes ques
tionable on one hand while the resolution of the 
lines becomes worse. With a moderate stress and 
at temperature below 4.2°K, population of car
riers on the levels M;=±! is small and can be 
safely neglected in the present analysis. 

In the treatment given so far, the Zeeman shift 
Qf the energy has been neglected, because it is 
smaller than the strain shift by an order of mag
nitude for the strain of l.O x 10-8• An ex~ra term 
associated with this Zeeman shift, nowever, 
should be taken into account in the low strain re
gion as well as for large quantum numbers . We 
may calculate the energy levels by a different ap
proach; i.e., diagonalization of the total Hamilto
nian H=H.+Hk+Hzeemu, under the assumption 
B=N/3. 19) The value for g-factor (2.c:) can be ob
tained from Figs. 5(a) and 5(b) through fitting the 
diagonalization curves (dashed) with the experi
mental data. In the diagonalization approach, 
the M; classification employed so far is replaced 
by the notations a:l: and !J:I: in accordance with 
Gurgenishi viii. U ) 

§ 4. Linewidth of the Quantum Line 

In the case that carriers are scattered by the 
thermal lattice vibrations, Bardeen and Shock
leylS) made a theoretical calculation for mobilities 
of electrons and holes in nonpolar crystals. The 
scattering probability was calculated for isotropic 
phonons (C44=Hcu- CIZ» by the deformation po
tential method, in which the carriers in a strained 
lattice feel a local energy disturbance oE propor
tional to the strain components eij; i.e., 

oE= 'Z 8 .;eij . 
';' j 

(4.1) 

Here 8ij is the deformation potential constant for 
electron. Herring and Vogt extended the above 
method to the case of many valley semiconduc
tors with an approximate anisotropic dispersion 
relation for phonons. 16) The relaxation time can 
be simplified in the ellipsoidal constant energy 
surface. In order to calculate the relaxation time 
Qf holes in germanium under uniaxial compres
sion, it is necessary to construct an interaction 
term analogous to eq. (4.1). When the uniaxial 

stress is applied along the <111> direction, the 
corresponding interaction Hamiltonian is given 
byeq. (3.1). It is a good apprOXimation to solve 
eq. (3.1) through the second order perturbation in 
the high stress limit. The reason why we can use 
the Herring-Vogt method is that the originally 
warped energy surfaces for holes, under the ap
plication of uniaxial stress, become nearly ellip
soidal around the axis of stress, thus simulating 
themselves to those for electrons. The final result 
is given in terms of the usual second rank tensor: 

D)f _J...D", _J...D", 
3 3 

D= 1 
D)f 

1 
(4.2) --D .. , --Du ' 

3 3 

1 1 
D)f --D, --D .. , 3 .. 3 

It is worth noting that eq. (4.2) does not contain 
the parameter D", that is, it is described only by 
two parameters D)f and D .. ,. The corresponding 
expression for the relaxation time of hole becomes 

1 2 
-= (3rrCkB Telj2/Vcl)(~.1.D)f + TJ.1.D)fD,. , + C.1.D;,); 
1'.1. 

where 

XIO' 

2 

C=(mJ.2m,,)lj2 V/28j2rr2A' , 
3 

CI=C12+ 2c44+S C* 

(4.3) 

I : THEORETICAL 
AMBIGUITY 

A 70.1 GHz 

o 35.3 GHz 

X= 1.8x10' kg / i::m2 

11L---~2~-L3--~4--5L---~ 

T (OK) 

Fig. 6. Temperature dependence of linewidth of 
the hole cyclotron transition (n=O-+l, M;= -~) 
under the conditions shown. The theoretical 
curves are fitted to the experimental values at 
1.5°K. Theoretical ambiguity arises from the dif
ficulty of determining the positions to measure 
the half-width; namely, the resonance lines may 
oscillate in the high magnetic field region, owing 
to the terms L:.(E-1IYJ)-1/2 in eq. (4.4). .. 
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and 

with 
f.1= 1.4, r;.1= 0.67 and C.1=0.38 

in the case X, H//< l11>; s is the energy of a hole 
and V the volume of the crystal. The coefficients 
f.1' r;.1 and C.1 are anisotropy parameters which 
depend on the effective mass ratio m.1/m" . 

The temperature dependence of the linewidth 
measured under the compression of 1.8 X lOs kg/ 
cm2 for the cyclotron transition (n=O~l,Mj=-!) 

is shown in Fig. 6 between 1.5 and 4.2°K toge
ther with the theoretical line. Since soc Tl/2 in ther
mal equilibrium, one may expect from eq. (4.3) 
l/'r.1 ex:: TB/ 2 as in the case for electrons. One finds, 
however, the linewidth varies approximately line-

arly with temperature at the frequency of 70.1 
GHz, though the temperature dependence be
comes somewhat less steep in the case of 35.3-
GHz. This result strongly suggests an apprecia
ble contribution of kH broadening to the line. In 
fact , it is easy to show that the resonance line
width varies linearly with temperature if we as
sume the transition to occur between two para
bolic Landau levels with different curvatures. 

One is now to analyze the linewidth. For the 
valence band problem one has to modify Ito's 
calculation of conductivity18l by taking the JW(kH) 
shift into account . In the case X//< I11> and for 
the transition (n= O~I, Mj=-!), the relevant 
conductivity expression is given by 

co {(E+7J)- 1/2+ 22:;(E - n7J)-1/2}- le-(E+aEl 
a(X )= r dEE- I/2'----- - .. ::....-.-- ------

, r; Jo 1+ 16Y2[r;{E+7J)- 1/2+ 22:;(E-nr;)- 1/2}]-2 
(4.4) 

where 

Y=(X-Jw(kH))T, 

X = w- wo, 

and 

1 2B2+-N2 
9 nwo 

a 
-2-(-A-+-! -N- )- (-A-_----c!- N- ) JE 

with 

In this approximation, we have considered the 
relaxation process only for the Mj=-! ladder 
set without taking the effect of nonparabolicity 
into account. Since kBT,nwc<{ JE, the phonon
induced transition probability from Mj= -~ to 
Mj= +! or to M j = ± t is considered quite small, 
and higher order terms can also be neglected to 
calculate the JW(kH) shift. The so-called reduced 
linewidth Xh &l! is given by 

X h &lf= X I - X 2= T.lJW (half-width) . (4.5) 

Here Xl and X 2 should satisfy the equation 

a(X. , r;)= +a(Xmax , r;), i = 1 and 2 . (4.6) 

By adjusting the theoretical value of X h & It to be 
equal to the experimental one at 1.5°K (see Fig. 
7), we obtain D2=30 (eV)2, where D2=1.4D~2+ 

0 .67D~D .. +0. 38D~ , . The DZ value obtained 
here is somewhat smaller than that obtained in 
the previous work,19l in which the estimation of 
JW(kH) as well as employed values of the band 
parameters were inadequate. For solving eq. (4.4) 
numerically, the NEAC 2200-500 computer has. 
been used. Figure 8 shows that stress dependence 
of the linewidth at 1.5°K. We have a nice fit 
of experimental data with calculation. D~ is now 
obtainable from eq. (4.3), using the values of D .. , 
and D2. Solution of the quadratic equation yields. 
D~=-5 . 2 or + 3.3 eV. Choice between these 
two roots is a difficulty. It should be made not 
to contradict with experimental results for the 
variation of the energy gap against hydrostatic 
volume change. A little more discussion will be 
made in the next section. 



692 H. FUJlYASU, K. MURASH and E. OTSUKA (Vol. 29, 

XIO· I : T1£ORETICAL 
AMBIGUITY 

2.S 

31:1: ~N 
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I 
I 

"1 
I 
I 
40 

02(eV)2 

T=I.S0K 
~ = 35.3GHz 
rJ=30(eV)2 

SO 60 

Fig. 7. Dependence of the half-width ~~(JJ on D2. 

The solid curve refers to the theoretical calcula
tion for x, H//( 111) and 35 GHz at 1.5·K. 

§ 5. Discussions 

1) Characters of the quantum lines 
For measuring the width of a quantum line, re

solution is essential. The condition IWe1-we21> 

£1w (we shall call this the secondary condition) is 
required on top of the ordinary condition for ob
servability of cyclotron resonance ; i.e., WelT and 
<tJe2T be greater than unity (we may call this the 
primary condition). Here, W.l and W e2 are angular 
frequencies at adjacent peaks, while Llw the line
width. In our experiments the maximum value 
of IW.l-w.21/£1w is 10. In order to get an optimum 
resolution as well as signal-to-noise ratio, one 
should control the stress very carefully. At 
moderate stress, both IW.l-w.21 and £1w are near
ly inversely proportional to the stress (see Fig. Sea) 
and Fig. 8). At high stress, dependence of the 
former on stress does not Change, while the latter 
approaches a limiting value. The resolution of 
lines then becomes worse as the stress is increased. 
The fact that we cannot observe the higher 
quantum lines with enough resolution is ex
plained by the reason that £1w gets larger as the 
quantum number is increased and thereby the 
secondary condition is no longer satisfied. This 
is because the higher energy levels are more 
strongly coupled with the bands M;= ±!. 

The lineshape of a quantum line differs from 
the usual Lorentzian shape. Because of the ' 
Aw(kH) contribution, it has an asymmetric struc
ture as is characterized by a shoulder on the high 

Xld' 

3.S 

3.0 

Td 
'" 2.S $! 

~~ 2.0 

I.S 

I : THEORETICAL AMBIGUITY 

1.0 

T=I.SOK 

~ = 3S.3GHz 
02=30 (eV)2 

I.S xiO' 
STRESS e' (kg / em2 ) 

Fig. 8. Stress dependence of half-width of the hole 
cyclotron transition (n=O-+l, Mi= -!) under the 
conditions shown . 

w~~ = 1.60 x 10' see-I 

X = 1.8 xI0'kg/em" 
0'= 30 (eV)' 
T = I.SoK 
• = 3S.3GHz 

~ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

" , " 

---.EXPERIMENT 

-THF;ORY 

l78 1.79 1.80 1.81 XIO' 
H (gauss) 

Fig. 9. Theoretical and experimental Iineshapes 
for the transition line (n=O-+l, Mi=-!). 

magnetic field side. One can see this feature in 
eq. (4.4) and Fig. 9. 

In Fig. 3, quantum lines are distinct up to fair
ly high n values. Though the higher states have 
smaller populations, the oscillator strength which 
is proportional to (n + l) makes up for that. 

2) Inverse mass parameters A, B, N, g-factor (2.\:) 
and shear deformation potential constants D .. 
and D", 

The values of the inverse mass parameters A, 
B, and N as well as those of the shear deforma
tion potential constants D .. and D,,' can be deter-
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Table (3-1). The valence band parameters given by experiments. (A. B. N) and (D", . D"". DaY') are 
given in units of I'lz/2mo and eV, respectively. 

Group 
I 

- A -B -N /C D", D", 
I 

DaY' 

Dexter et al.a 13.1 8.3 32.1 3.9 
± 0.4 ± 0 .6 ± 0.5 

Levinger et af.b 13.27 8 .63 33 .6 

Goodman-, Fletcher et al. d 13 .21 8.56 33.36 3.9 

Okazaki-, Henself 13.2 8.12 33 .72 3.9 

Henselu 13.38 8.60 34 .08 3.60 3.91 
± 0 .02 ± 0.04 ± 0.12 ± 0.04 ± 0.25 

Otsuka et al .1I 4.2 4.9 
± 0.2 ± 0.5 

Hall; 3.15 6.1 
± 1.3 

Glassi 3.1 4.1 
± 0.5 ± 0.5 

Balslevk 2.7 3.2 
± 0 . 5 ± 0.4 

Present 13.50 8 .80 35.20 3.9 3. 14 4.00 -5.2+~: g 
± 0.05 ± 0.09 ± 0.23 ± 0.20 ± 0 .20 or 3.3~tg 

a . R.N. Dexter, H.J. Zeiger and B. Lax: Ref. 1). 
b. B.W. Levinger and F.R. Frankl: J. Phys. Chern. Solids 20 (1961) 281. 
c. R.R. Goodman: Ref. 7). 
a. R.C. Fletcher, W.A. Yager and F.R. Merritt: Ref. 6). 
e. M. Okazaki: Ref. 9). 
f. J.C. Hensel: Ref. 8). 
g. J.C. Hensel: Ref. 14). 
h. E. Otsuka, K. Murase and H. Fujiyasu: Ref. 13). 
i. J.J. Hall: Ref. 25). 
j. A.M. Glass : Canad. J. Phys. 43 (1965) 12. 
k. I. Balslev: Phys. Rev. 143 (1966) 636. 

mined very accurately from the first and second 
quantum lines, using Hasegawa's second order 
perturbation method which takes the spin-orbit 
split-off band into account. For determining ", 
the above parameters and the assumption that 
B-N/3~0 are used. Values of D" and D", ob
tained so far are to fall around 4 and 3 e V, respec
tively, except for Hall's dataZ51 for D" (Table 
(3-1». The values D".=4.9 and D"=4.2 (eV) 
given by our previous experiments are a little 
larger than the present ones. In the past, a per
pendicular squeezer (H..lX) was used. The cal
ibration of the stress was indeed accurate, but the 
subsequent analysis was difficult because of the 
poor resolution of the second quantum line. 

Kohnz61 estimates the Hz band parameter for 
Ge to fall in the range 0>Hz-:?-O.5. The present 
result satisfies this requirement; namely H z= 
().41. For D" and Du ' there exists a theoretical 
-calculation by Goroff and Kleinman for: Si .Z71 No 
-calculation has been available for Ge. One might 
see some significance in the ratio D",./D". Ac-

cording to Goroff and Kleinman, the ratio be
comes 1.2 for Si. The present work for Ge gives 
Dv .. /D,,=1.3, which is very close to the predicted 
value for Si. 

3) Comparison of the value of D~ with those derivd 
by indirect method 

The present work derives the D~ value solely 
from the same valence band cyclotron resonance 
measurement. One may, however, also find the 
quantity in an indirect way, which combines the 
hydrostatic compression data with the informa
tion of the conduction band deformation potential 
constants. In order to see how effective the latter 
method is, we shall give some qualitative discus
sions below. 

The dependence of the band gap energy Eg(Ll 
r,s) on deformation is given by the relation 

dEg/dln V=Ea+E",/3-D~ . (5.1) 

The value of dEg/d In V has been measured by a 
number of workers. Experimental data prior to 
1960 are summarized by Keyes and gtouped into 
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two branches, the first branch centered around 
-3.8 eV while the second around - 5.7 eV.28) 
Recently Balslev adds another precise set of 
data. 29) As for the set of B" and Ba., perhaps most 
reliable data are obtainable from cyclotron reso
nance experiments18.80 .81l and their values are 
given in Table (5-1). One can then derive the 

Table (5-1). The deformation potential constants 
(B" and Bd) as well as the energy shift of the con
duction band. 

Group Bu(eV) Ba.(eV) Bd+ B,,/3 
(eV) 

Bagguley et al.a. 16.6 -11.3 -5.8 
Ito et a/.b 18 .7 -10.5 -4.3 
Murase et al. e 19.3 - 12.3 - 5.9 

G. Ref. 30). The values tabulated here are different 
from the original ones given in ref. 30), since the 
method of average for electron scattering is 
modified in accordance with Gold et al : Phys. 
Rev. 103 (1956) 1250. 

b. Ref. 18). 
e. Ref. 31). 

Table (5-2). Scatter of the Ddv values derived in
directly from eq. (5.1) with the help of the conduc
tion band deformation potential constants ob
tained by three groups in Table (5-1). In the first 
column, three representative values of dEg/dln V 
are given to start with. Case a, Case band <;ase 
c correspond to a, band c in Table (5- 1), respec
tively. 

dEg/d In V Case a (eV) Case b (eV) Case c (eV) (eV) 

-3.828 -2.0 - 0.5 - 2.1 
-5.728 -0 .1 1.4 -0 .2 
-3 .229 -2.6 -1.1 -2 .7 

value of D~ from eq. (5.1) and the data in Table 
(5- 1) . The results are shown in Table (5-2) . We 
get a considerable scatter of values for D~ from 
various possible combinations of the available 
data. Almost in every case, however, one finds 
D~ negative. One is thus inclined to choose the 
value -5.2eV rather than + 3.3 eV. The abso
lute value yet seems a little bit too large. Indeed 
the present method deduces the D~ value solely 
from the same experimental series of cyclotron 
resonance. But one should admit the large am
biguity inherent to D2 which is difficult to over
come by experimental accuracy at present. The 
parameters in eq. (5.1) used to derive D~, on the 
other hand, can be determined, in principle, as 

accurately as we wish. Especially the recent 
precise determination of B.. and Ba.,81) in the 
present authors' opinion, is quite encouraging for 
the use of eq .. (5.1). A final conclusive value of 
dEg/d In V would then lead to a more realistic 
value of D~ than the one obtained in this work. 
More elaborate works both experimental and 
theoretical would be required to settle the prob
lem. 

In summary, it should be stressed that though 
the accurate determination of the band para
meters of the valence band of germanium is dif
ficult because of the r,s degeneracy, the present 
method which utilizes cyclotron resonance techni
que associated with uniaxial stress makes it possi
ble to determine them much more accurately 
than the previous works . The newly obtained 
set of parameters will no doubt facilitate the 
future discussions of the dynamics of the holes in 
germanium. 
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